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MlTLTIPLE SCATTERING BY LLTGE PARTICLES 

WILLIAM M. I K V I N E .  

ABSTRACT 

The Netrmann solution to the scalar equfltion of transfer 

is obtained 

numerically for sample phase functions with large forward and 

backward peaks. The results are presented graphically and are 

in a homogeneous layer of optical thickness T* C 1 

compared with the intensities and albedos computed by 

approximate methods. 

I. Introduction 

The problem of multiple scattering by particles whose 

dimensions are comparable to or larger than the wavelength 

of the radiation scattered is made difficult by the extreme 

asymmetry of the individual particle scattering diagrams. 

Such particles, which are predominant in terrestrial clouds 

and haze, scatter radiation primarily in the forward direction. 

Methods of solution for the corresponding equation of  radia- 

tive transfer are known in principle ( Chandrasekhar 1 9 6 0 ) ,  but 

very few exact numerical results hsve been obtained. The 

present paper gives such exact results. The purpose is two- 

f o l d :  to show the effect tkat e. large asymmetry in the scat- 

tering diagram has on the angular distribution of  diffuse light 

in a plane scattering layer, and to evaluate some of the approxi- 

mate methods employed in radiative transfer problems. 
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The calculations are intended to be illustrative rather 

than to form an exhaustive critique of existing methods, and 

are confined to layers of optical thickness T* 1 and to si- 

tuations with azimuthal symmetry and conservative scattering. 

TI. Problem 

We shall consider en ideali7ed problem: monochromatic 

radiation is scattered by plane-parallel, homogeneous, non- 

absorbing layer of optical thickness T*. The angle between 

a given direction. and the direction of increasing optical depth 

T will be designated0 . The scattering per unit volume is 

characterized by a scalar phase f'unction .(scattering indicatrix) 

4 ( c o s  a ) ,  where a is the scattering angle and 4 (cos a)  is 

asymmetric about a=n/2. Two alternative azimuth-independent 

sources of the radiation will be considered: radiation confined 

to the cone 9-0 incident on the top of a layer containing no 

internal sources (the resulting intensity is the average over 

azimuth of the intensity resulting from irradiation by a parallel 

beam); or a uniform distribution of sources within the layer, 

and no radiation incident from outside. 

of diffuse radiation (of total radiation in the case of internal 

sources) in the layer is then governed by the equation of  trans- 

fer in the form 

The specific intensity 



where P= cos 8 ,  J is the source f'unction for once-scattered (eq. 3a) 

GL* unscnttered (eq. 3b) light: 
1 

J1 ( T , P )  1 ; (internal source) (3b) 

end 

d 4  @(P,~:P',O) (4) 
F ( P , P ' )  = - 1 2n S= 0 

Exact solutions to the above problem have been obtained in 

only a few isolated cases (Chu et al. 1963; Romanova 1963; van de 

Hulst and Davis 1961). An exception to this statement occurs for 

9 (cos a )  = 1 + k cos a, but even in this case results have been 
tabulated only for T = O0 (see Harris 1961 and Sobolev 1956). 

111 Method 

As is well known, the equation of transfer may be rewritten 

as an integral equation for the source function J, in which the 

integral operator A involves an integration over both angle and 

optical deDth: 

c o  . 
A solution to this equation (the Newnann solution) is then an in- 

finite series (Busbridge 1960), each term o f  which involves a suc- 

cessive application of the A operator to J1: 
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Physically, this series is nothing but an expansion of the source 

function in successive orders of scattering (e.g. van de Hulst 

1948). The diffuse intensity I may then be written as 

where 

The calculations, which involved a double numerical integra- 

tion in order to obtain +, from J,-l in accordance with equation ( 8 ) ,  

were performed on an IBM 7094 Model 1; the time for one iteration 

with the A operator varied from .2 minute to about .7 minute, de- 

pending on the numer of points used for the integrations, which 

depended in turn on the asymmetry of  the phase function. 

rule was used. 

J no 0 Jno-l' 
pendent of T and of angle (Leonard and Mullikin 1964). 

of the series (8) may then be replaced by a geometric series. 

varying the number of points used for the integrations and the value 

of no, it was found that the computed results are accurate to about 

Simpson's 

If a sufficient numer of  terms no are computed, 
f where r( is the maximum eigenvalue ofA and is inde- 

The remainder 

By 

1 per cent. 

The particular phase function used for most of the calculations 

w a s  that first introduced into astrophysics by Henyey and Greenstein 

( 1 9 4 . l )  
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which gives a sharp forward peak in the scattering using only one 

parameter. This parameter, g, which may be called the asymmetry 

factor, is the average over the unit sphere of the cosine of the 

scattering angle, weighted by the phase function (see Irvine 1 9 6 5 ) .  

For some of the computations a sum of two such phase functions was 

used 

+ 

This allowed the introduction of peaks in both the forward and 

backward directions of scattering. 

Figure 1 shows the phase functions which were used for 

numerical computations. Their significance is explained in 

Table 1. 

IV. Comparison with Approximate Methods 

The present method is "exact" in the sense that it provides 

a numerical approximation to an exact solution of equation (l), and 

this approximation can be made arbitrarily close to the exact solu- 

tion if sufficient computer time is used. In contrast, we shall 

call those methods "approximate" which are not based on an exact 

solution of our idealized problem. Such methods fall into two cate- 

gories: those that take into account the asymmetry of the phase 

function, but treat the multiple scattering problem only approxi- 

mately; and those that utilize exact solutions o f  the equation of 

transfer, but use a simplified phase f'unction. The first can say 
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little about the intensity I as a function of angle; they may, how- 
ever, provide a good approximation to the total flux reflected or 

transmitted by a layer. Illustrations are discussed in § a) below. 

The second have frequently been used in an attempt to obtain at 

least qualitative information about the angular distribution of 

radiation. Examples are given in Sb). 

It must be stressed that our idealized problem differs in 

several respects from even the simplest physically realizable 

situations (cf. van de Hulst and Irvine 1962). 

two points: first of all, we have here neglected polarization. 

Apart from the l o s s  of information which results, errors are intro- 

duced into the resultant intensity even if the,unscattered light 

is initially unpolarized. For Rayleigh scattering, these errors are 

negligible for very thin layers (single scattering domfnant) and are 

of the order of 10 per cent for a semi-infinite atmosphere (Chandra- 

sekhar 1960). 

less for spherica.1 drops or for randomly oriented irregular particles. 

Hence, the error due to neglect of polarization should be less than 

in the Rayleigh case, except f o r  a situation with aligned, asymmetric 

particles (such as might occur in the presence of a magnetic field). 

Secondly, the phase functions, such as eq. (12), used for the exact 

calculations correspond only approximately to those of real particle 

distributions (see Figure 1). 

tative nature of the radiation field for large particle multiple 

scattering, however, &d not in the details of specific situations; 

consequently, the omission of rainbows and related phenomena is not 

important. 

To comment on just 

The polarization due to single scattering will be 

We are interested only in the quali- 
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In Figures 2 - 9 the full curves give the Neumann solution 

cprresponding to the phase function that labels the curve (see 

Table l), while the dashed curves are various approximations. 

In Figures 4 - 9, 8 represents the angle to the outward normal 

at the surface considered. 

a) Albedo of a layer 

The total reflectivity or albedo A of a layer is of vital 

importance to computations of atmospheric heat balance. 

shows the albedo of a layer of optical thic.knessr* for normal inci- 

dence and two choices of the phase function. As is to be expected, 

the albedo is much larger for isotropic scattering than for forward- 

directed scattering. The approximation (dashed curves) shown is 

the familiar two-stream theory, in the formulation of Chu and 

Churchill (1955). 

for normal incidence and. thin layers. 

dence the two-stream theory breaks down, but comparable accuracy 

could perhaps be obtained by using a six-stream theory such as that 

of Chu and Churchill (1955). 

Figure 2 

This approximation produces very good results 

For larger angles of inci- 

Diffusion theory has frequently been applied to problem of 

radiative or neutron transport (Glasstone and Edlund 1952). In its 

standard form this method is useful if the distribution of sources 

in the layer is reasonably homogeneous, and if the point considered 

is not too near the boundary of the layer (say 2 5 T s T* - 2 ) .  

These conditions are not fulfilled for reflection and transmission 

of mi-directional radiation by a plane layer of large particles. 

To study the albedo of terrestrial clouds, Fritz (1954) proposed a 
modified diffusion theory in which only light that has been scattered 

by at least 60' away from the direction of the incident beam contri- 
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butes to the source term in the diffusion equation. This approximation 

works very well for normal incidence and thin layers (Fig. 2). 

The albedo of a layer of unit optical thickness for various 

values of the angle of  incidence is shotrn in Figure 3 for two 

choices of phase f’unction. The dashed curve is taken from Fritz 

(1954). Fritz’s main result, the sharp increase in the albedo of 
a cloud for large angles of incidence, is confirmed by the exact 

calculations. The difference between this curve and the exact results 

at largevo may be due in part to the use of slightly different phase 

functions; it probably also reflects the loss in accuracy which 

Fritz anticipated for large zenith angles. 

b) Inteqsity - 
Let us now consider the variation with angle of the intensity 

I 

emanating from a plane scattering layer. We shall compare with the 

present calculations two approaches that have been used in the past: 

(i) exact solutions to the equations of transfer obtained for only 

slightly elongated phase functions; and (ii) approximate methods 

based OT: the use of exact expression f o r  first order large particle 

scattering. 

(i) Several authors (e.g. Horak 1950, and Harris 1961) have hoped 

that in certain situations the diff’use intensity produced by large 

particle multiple scattering would not differ qualitatively f r o m  

that obtained with a phase f’unction consisting of  a three-, two-, 

or even one-term expansion in Legendre polynomials. 

Let us test this idea for a thin layer. To eliminate any 

preferred. direction resulting from the initial conditions, consider 

a scattering layer with a uniform distribution of internal sources 

(eq. [3b 1; this model has been used to compute a first order approxi- 
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mation to the diffuse light In the Galaxy by Horak 1952 and van de 

Hulst and Davis 1961). 

a layer differs little among the cases B, C, and. D of Table 1 (Horak 

1952, and unpublished calculations by the author), considerable dif- 

ferences develop for more elongated phase functions (Fig. 4). The 

relative difference between the intensities corresponding to the 

Although the intensity I ( e )  emitted by such 

two phase functions in Figure 4 decreases as T* increases, but the 

process is very slotr. That this difference is not primarily a 

result of low-order scattering can be shown by m examination of 

the eigenf'unctions, Ino, which differ even more than the total 

diffuse intensities. In other w o r d s ,  even after the photon has 

been scattered many times, it still knows that the phase function of 

the layer is asymmetric (essentially because it can "see" the 

boundaries). 

For the more asymmetric initial conditions (eq. [ 3al ) typical 

of planetary problems, the use of a two- or even a three-term Le- 

gendre expansion of the phase function gives results f o r  the dif- 

fuse reflection which may differ by a factor of 2 or 3 f rom those 

for large particle scattering (Fig. s) ,  while the diffuse trans- 
mission is qualitatively different. A limited Legendre expansion 

can be made more elongated if negative scattering is allowed at 

certain angles (Churchill et al. 1961). This procedure does not 

bring much improvement in the diffuse transmission, however, and 

is entirely inappropriate for the diffuse reflection. In Figures 

6 and 7 curves F and G were obtained for two- and three-term Legendre 
expansions for which the first (and first and second) moments were 

chosen to equal those of the function E, f o r  which the diffuse re- 

flection and transmission are also shown. 
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The hope has sometimes been expressed that one could approxi- 

mate an elongated phase function, such as that for cloud droplets, 

by isotropic scattering if the radiation scattered in the forward 

peak weTe considered as unscattered. This corresponds to using in 

the transfer equation a scattering coefficient that is some fraction 

of the true value (close t o  0.5,  since for large particles half of 

the scattered light is diffracted and is confined to the forward 

peak). 

from Fig. 1, which shows that typical phase functions for haze and 

clouds are sharply varying functions of angle over almost their 

entire range. The diffuse intensity calculated in this approxi- 

mation ( @ = 1, T*= r*/2 ) is labeled 6 and is compared in Figures 

6 and 7b to that for the phase function E. 

The large errors Inherent in such an approach are clear 

One might hope that the scattering f o r  a simple phase function 

such as C or D would correspond. more closely to that f o r  large par- 

ticle scattering in the case of a thick layer (?* >> 1). Indeed, 

within the depths of a thick, conservatively scattering layer illu- 

minated from outside the intensity is independent of phase function 

(Sobolev 1956). 

f o r  the reflected (Romanova 1963) and the transmitted (Piotrowski 1961) 

light, however. 

Significant departures from this independence occur 

(if) For layers of optical thickness T*I 1 the Neumann solution 

converges rapidly and it is natural to consider approximate solutions 

based on exact first order scattering. The first order scattering 

(11) by a plane homogeneous layel- can be found very easily for an 

arbitrary phase function from equations ( 3 )  and (10). One may then 

approximate the higher order scattering appropriate t o  the exact 
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phase f'unction by the corresponding scattering f o r  simpler phase 

fsxctions. We shall consider three possible approximations o f  this 

type -- exact first order scattering plus higher order scattering 
computed for : 

a. isotropic scattering and a value of T* equal to that used in 

the exact calculation. 

j3. isotropic scattering and a value of  T* equal to half of that 

used in the exact calculation (i.e., assuming that half the scattered 

light is confined to such small angles that it may be treated as 

unscattered). 

y. a phase function 1 + 3 g  cos a, where g is chosen t o  equal the 

asymmetry factor o f  the exact phase function. We shall call this 

the Sobolev (195'6) approximation. 

Fijpres 6 - 9 compare the diffuse reflection and transmission 

computed from the Neumann solution f o r  three choices of elongated 

phase finction with the intensities computed from the approximations 

just described. We note the following points f o r  normal incidence 

and transmitted light: 

1. All three approximations give similar and reasonable good results 

for the forward peak in the transmitted light; this is due,of course, 

to the large contribution of single scattering. The Sobolev approxi- 

mation is slightly better in this region than approximation (a), which 

is in turn slightly better than ( p ) .  

2. For angles 8 2 45'" the Sobolev approximation may err by a factor 
of 2 o r  3 ,  becoming worse for more forward-directed @ . 
approximation ( p )  can five fairly good results, even for the most 

asymmetric phase function tried ( H  in Table 1). Approximation ( a )  

In this region 
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seems to consistently over-estimate I in this region, and not t o  be 

az safe an estimate as ( p ) .  

3 .  In the intermediate range (20° 6 e 6 45") approximations ( p )  and 

( y )  seem to bracket the true intensity fairly well, while (a) may be 

closer to the exact value. 

Likewise we observe' f o r  the reflected light that 

1. Approximation ( a )  is considerably worse than ( p )  or ( y ) ,  giving 

an overestimate of up to a factor 3 .  It does not improve rapidly 

for smaller T . 
2.  If there is not a large backward peak in Q , the Sobolev approxi- 

matTon may give good values for both 0 E 10' ando E 87'. In the 

intermediate range, however, and if' there is large back-scattering, 

the agreement with the exact results may be only qualitative. 

3.  A l l  three approximations overestimate the back scattering, except 

when Q has a sharp backward peak (Fig. 9b). In the latter case 

approximation ( p )  most closely fits the true curve for angles close 

to the directly backscattered light. 

A f'urther comment concerning the Sobolev approximation may be 

made. The X and Y functions for diffuse reflection and transmission 

with a phase function Q =  1 + 3g cos a are not tabulated for finrite 
layers. Consequently, unless a considerable computational program 

is undertaken, the Sobolev approximation can be used orrly by making 

additional approximations in order to obtain the intensity corres- 

ponding to such a phase function (Sobolev 1 9 5 6 ) .  

duces further errors (Atroshenko et al. 1962) .  

This process intro- 

V. Conclusion 

The previous examples show that for optically thin layers of 
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large particles the albedo may be obtained with reasonable accuracy 

through the use of methods which take into account the asymmetry 

of the scattering but describe multiple scattering only crudely 

(two-stream theory, diff’usion-type theories) Such methods, how- 

ever, can say little about the diff’use intensity as a f’unction of 

angle. Approximate methods based on the use of exact first order 

scattering can give good results f o r  the intensity diff’usely trans- 

mitted by a thin layer; the reflected intensity s o  obtained may be 

only qualitatively correct. 

This work was supported in part by the National Aeronautics 

The programs used and Space Administration through Grant 89-60. 

for the numerical computations we;le written by Jerome Cherniack 

and Lane Emerson; Marietta Huguenin performed the necessary desk 

calculations. Their assistance is gratefully acknowledged. 
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Fig. 2.--Albedo of a plane-parallel layer of optical thickness T* 

illuminated norrnally as computed fromthe exact and from the two-stream 

theory. 
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Both isotropic (B) and forward-directed (A; see Table 1) scattering 

Results of Fritz (1954) lie on exact curve A. 
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G (see Table 1) and f o r  curve 6 (isotropic scat ter ing,  I * = 0.5). 

ct,D,y represent approximations t o  curve E described i n  I V .  b. ii. 

Exact calculations f o r  phase functions E, F, 
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